
4/5/01 1

Zuma Training/Tutorial

4/5/01 2

Innovative Integration’s
 Zuma Toolset

Comprehensive tools and libraries for
DSP applications

4/5/01 3

Getting Started

! Necessary components
! CCStudio compile tools are needed to compile programs

for all TI DSP cards
! JTAG emulator and CCStudio debug tools are necessary

for debugging code on TI DSPs
! Innovative Integration’s Code Hammer JTAG emulator or XDS510

compatible

! Zuma is bundled with CCStudio
! Reduces installation errors
! Ensures the proper version is used
! Simplifies installation – only one CD needed

4/5/01 4

Getting Started

! Insert the II CD and run the install for
the M6x under the PCI/cPCI products
tab.
! Follow the installation instructions in

the manual.
! You should select the PCI JTAG
! There is no need to install the Borland

or Visual Basic components.
! Skip the JTAG Debugger Driver

Installation section.
! The typical installation will also install

CCStudio and you will need to enter a
password.

! At the end of the CCStudio installation
you must chose not to restart your
machine at this time. The installation
will continue after this.

4/5/01 5

Getting Started

! Now turn off the machine
and install the JTAG card
and the M6x board.
! The POD should be connected

to the JTAG port on the card
and the A4D4 should be
installed in site 0 before you
power up.

JTAG Port

4/5/01 6

Getting Started

! When you power up, the
CCStudio setup program
may start automatically,
close it (exit) and the II
installation will set it up
automatically or it may be
done manually later.
! It is best to set up later since

you will not know the address
of the JTAG until the board is
recognized by windows.

4/5/01 7

Getting Started

! Test the JTAG Debugger
installation by running
JTAGDIAG from the start
menu under M6x DSP
board.
! Pressing the Start button will

blink the ACCESS LED on the
JTAG POD if the driver is
connected properly.

4/5/01 8

Getting Started

! Next Open UniTerminal
from the Windows start
menu.
! From the File menu do a Coff

file ->Download and load the
Hello.out file in:
M6x/examples/target

! The screen should look the
same as shown on the right.

4/5/01 9

Getting Started

! Leaving UniTerminal running, Open CCStudio from the windows start menu.
! From the Project menu, select Open and open Hello.mak in the

M6x\examples\target directory.
! Open the source code by expanding the Project folder on the left, expanding

hello.mak project, expanding the source code folder, then double clicking the
hello.out file.

4/5/01 10

Getting Started

! In the source code window, change “Hello World” to “Hello <your name>”.
! From the Project menu select Build.

! You should get notification soon that your application rebuilt with no errors.

! Place the cursor on the Hello line and left click to move the cursor to this line.
Click the white hand on the left to set a break point.

Set Break Point

Build

Run

4/5/01 11

Getting Started

! From the File menu, select
File Download. Browse to
the Hello.out file that was
just rebuilt and click Open.

! After the file downloads,
press the Green Man icon
on the left and the program
will run to the Hello line and
stop.
! At this point the UniTerminal

screen should be clear and
the hello line should be half
yellow and half red indicating
that the processor has
stopped on that line.

4/5/01 12

Getting Started

! Press the Green Man icon
again and the program will
continue to run and the
UniTerminal will show the
appropriate output.

4/5/01 13

Zuma Toolset

! Technical Summary
! Usage Examples
! DLL Overview
! DspComponent

4/5/01 14

Zuma Toolset
Technical Summary

4/5/01 15

Terminology

! Host
! PC running Windows equipped with software applications

specifically designed to allow development of application
programs for DSP-equipped targets.

! Target
! Small, self-contained, “microcomputer-on-a-card”
! Features a digital signal processor (DSP) able to perform

control and data acquisition functions
! Three basic types:

! SBC: Able to run without a PC
! PCI: Requires a PCI slot within a conventional PC
! cPCI: Requires a PCI slot within a CompactPCI PC

4/5/01 16

Terminology

! Native Development
! Use Host SW to build applications that run on the Host

! BCB, MSVC, MSVB, Delphi, et al.

! Cross Development
! Use Host SW to build applications that run on the Target

! Code Composer, TI Compiler, TI Assembler, et al

! PCI and cPCI Targets
! Usually requires both Native and Cross development

! SBC Targets
! Usually requires just Cross development

4/5/01 17

Native Development

! Compiler
! Converts source (C/C++/Pascal) language source files

(.c/.cpp/.pas) into assembly language files (.asm)

! Assembler
! Converts assembly language files (.asm) into machine

language files (.obj).

! Linker
! Combines machine language files (.obj/.dcu) with library

files (.lib/.dll) to create target executable files (.exe)

4/5/01 18

Native Development

! IDE
! Integrated set of tools to support many aspects of

application software development
! Editor

! Authoring of application source code

! Compiler/Linker/Assembler
! Conversion of source into executable code

! Debugger
! Seizes control of Host CPU to permit rapid discovery and correction of

software defects in executable code

4/5/01 19

Native Development

! Zuma DLL (Dynamic Link Library)
! Library of Host functions used to allow user-written

application programs to interact with DSP target boards
! Usable from within virtually any language

! C/C++, Visual Basic, Delphi, etc

! Note
! DOES NOT provide a means of using the DSP board for

any particular purpose “out-of-the-box”
! DOES provide a vehicle for basic target access,

initialization and control

4/5/01 20

Native Development

! DspComponent
! Simplified interface to any Zuma Host DLL

! Faster and easier development
! Less Host and Target programming knowledge needed

! Packaged as a drag-n-drop “component”
! VCL for Borland Builder
! ActiveX for MSVC, MSVB and others

! Facilitates target-independent applications, like
UniTerminal

4/5/01 21

Native Development

! Process
! Write/modify source code using editor

! Combine:
! Windows API, Zuma DLL or DspComponent and custom functions

! Convert source into executable (.exe) using compiler
! Test executable under debugger
! Iterate 1..3 until defects eliminated

4/5/01 22

Cross Development

! Tools
! C/C++ Compiler

! Converts C/C++ language source files (.c) into assembly language
files (.asm)

! Assembler
! Converts assembly language files (.asm) into machine language

files (.obj).

! Linker
! Combines machine language files (.obj) with library files (.lib) to

create target executable files (.out)

4/5/01 23

Cross Development

! Tools (cont)
! Debugger

! Seizes control of target DSP to permit rapid discovery and
correction of software defects

! JTAG Debugger
! Type of debugger which controls the target using a dedicated

hardware communications channel, JTAG 1149.1

! Applet
! Utility program running on the Host PC to permit a specific

development activity

4/5/01 24

Cross Development

! Tools (cont)
! Target-Independent

! Standard I/O
! Popular C library functions allowing target programs to print

characters to the screen and read characters from the keyboard (like
DOS applications)

! UniTerminal
! Applet which steers target standard I/O to the Host keyboard and

screen
! BinView

! Applet which permits graphing of binary data stored in Host files or
memory

! Download
! Applet which configures a PCI or cPCI-type target to run a user-

written target application at Windows startup

4/5/01 25

Cross Development

! Tools (cont)
! Target-Independent

! JtagDiag
! Applet which initializes Innovative JTAG interface board.

! CoffDump
! Applet which reports memory usage of any target application

4/5/01 26

Cross Development

! Tools (cont)
! SBC-Specific Tools

! Burn
! Applet which configures an SBC-type target to run a user-written

application at power-on
! PromImage

! Applet which converts a user-written target file (.out) into format
needed by Burn applet (.bin)

! ComConfig
! Applet which configures the default communications speed (baud

rate) between SBC-type targets and Host applets

4/5/01 27

Cross Development

! Tools (cont)
! M6x-Specific Tools

! Boot
! Applet which downloads and runs benign program on target.

(Debugger aid).

! Q6x-Specific Tools
! QBoot

! Applet which downloads and runs benign program on target.
(Debugger aid).

! UniTerminal
! Supports .MPO files (clusters of up to four .OUT files) downloaded as

a unit

4/5/01 28

Cross Development

! Zuma Peripheral Libraries
! Library of Target functions used to allow user-written

application programs to interact with DSP peripherals:
! A/Ds, D/As, Digital I/O, UARTs, PCI bus, etc.

! Note
! DOES NOT provide a means of using the DSP board for

any particular purpose “out-of-the-box”
! DOES provide a basis for sophisticated target peripheral

access, initialization and control

4/5/01 29

Cross Development

! Process
! Write/modify source code using editor

! Combine:
! TI C, Zuma Peripheral or custom functions

! Convert source into executable (.out) using compiler
! Test executable under debugger (Code Composer)
! Iterate 1..3 until defects eliminated

! PCI/cPCI: Download executable via DLL from within Host
application or at Windows startup

! SBC: Burn executable in ROM. Boot from ROM at power-
on

4/5/01 30

Zuma Application Model

VISR

Busmaster

PCI
Interface

DSP Card

Busmaster
Interface

Application

Application
Bulk Data
Processing
Function

Mailbox Messages

Application
Message
Processing

Mailbox
Interface

Background threads

Application
Interrupt
Processing

Optional

4/5/01 31

UniTerminal Model

PCI
Interface

DSP Card

Busmaster
Interface

UniTerminal
Mailbox MessagesMailbox

Interface

Mailbox #0 interface consumed
while UniTerminal active

• Enhanced stdio interface
• Not intended for end-application use

4/5/01 32

Application Model

VISR

Busmaster

PCI
Interface

DSP Card

Busmaster
Interface

Scope
Example

Mailbox MessagesMailbox
Interface

Background threads Optional

• VISR
• Mailboxes
• DLL via
 DspComponent
• Busmastering

4/5/01 33

Example Target Application

! Hello World
! Start UniTerminal. Target Init OK?
! Start CCStudio
! Project | Load \M6x\Examples\Target\Hello.mak
! Click Project | Rebuild All
! Click File | Load Program to download the executable
! Click Debug | Run Free to run the executable
! Observe output on Terminal display.

4/5/01 34

Modify Target Application

! The world is a harsh mistress. Edit the target
source (hello.c) to display:

“ Goodbye, cruel World!”

! Recompile, download and run the modified code

4/5/01 35

Example Host Application

! Scope
! Start BCB
! Load \M6x\Examples\Host\Scope\Scope.bpr
! Click File | Build Scope
! Click to run the example

4/5/01 36

Example Host Application

! Scope
! Similar complexity to

Armada ArbGen
example

! GUI-specific code in
ScopeMain.cpp

! Target-Specific code in
DspBoardFtns.cpp
(326 lines of code)

Verify COFF location

4/5/01 37

Class Project

! Introductory Example Sequence
! Start Host IDE
! Create new Project

! Select File | New Application from the Menu
! Select File | Save All

! Name Project “ZumaDemo”
! Name Unit1 “Main”

4/5/01 38

Class Project

! The Goal
! Communicate with a target

application
! Demo1.c

! Protocol
! Host Synchronization

! Keeps from losing commands

! Command Loop
! Check for Mailbox Data
! Read Command Word

! Reset Counter Command

! Send Counter to Host

4/5/01 39

Class Project

! Use DspComponent to control target
! Drop from the Innovative Tab onto the application form
! View Properties in the Inspector

! BoardType -- set to ibM62
! CoffFile -- set to “Demo1.out”

! File to download

! Enabled -- set to true
! Loads DLL on program start

! Target -- set to 0
! ID number of M62 in system

4/5/01 40

Class Project

! More on DspComponent
! Hit <Ctrl>-F1 to bring up Help File
! Public Properties

! MailboxCount
! Number of supported mailboxes

! MailInFull and MailOutEmpty array
! Flag if data is available from target or has been received by target

! Mailbox array
! Read or write data to target. Will wait for data if reading, or wait for

last word to be read if writing.

4/5/01 41

Class Project

! More on DspComponent
! Methods

! BootTarget()
! Resets and boots target board.
! Returns true if successful, false on failure

! Download()
! Downloads the COFF file. Returns false on failure
! Returns true if successful, false on failure

4/5/01 42

Create the UI

! Add a Button to the Form
! Set Name to “DownloadBtn”
! Set Caption to “Download”

! Add a Message Label to the
Form
! Set Name to “Display”
! We will use this to print

messages to the user
You can use the Font
property to make the
Display label larger.

Click on the Font
property, then on the

‘…’ button to display a
selection dialog.

4/5/01 43

The Download Button

! Double-Click on the
Download button
! Skeleton Handler appears in

code window
! Fill in Download Sequence
! Run the application

! Did “Download Complete!”
Appear?
! Yes - go on!
! No…

! Is the CoffFile property
name correct?

! Is the DspComponent
Enabled property true?

It may not seem like much, but this code
will reset the board hardware, find and load the

COFF file (also known as the .OUT file),
transfer it to the M62 memory and run it.

4/5/01 44

Target Synchronization

! The Problem
! Target may be unready for

commands
! The host may need to wait until

the target is configured and
ready

! Coordinate Host and Target
! Need to know if target has

reached some point in the code

! The Solution
! Use a Read/Write pattern to

allow the target to catch up
! Note: the target uses the

opposite order than the host

Add this code to the end of the
Download button handler you just

created.

4/5/01 45

Command #1

! The Target program
increments a counter each
command
! Drop a new button on the form
! Rename the button “CountBtn”
! Change the Caption to “Count”
! Create a button handler

! Have it send a ‘0’ command, read
the reply, and display it

! Run the program
! The display shows a new number

each time the button is pressed...

4/5/01 46

Command #2 - Reset Count

! Implement the Reset function
! Create a Reset Button
! Implement its handler

! Send command code 0xFFFF
! Fetch the reply
! Display the count...

! The count resets!

In larger applications, commands
can be more complex, but the
idea is much the same.

